Abstract
The medicinal leech (Hirudo verbana) is an annelid (segmented worm) and one of the classic model systems in neuroscience. It has been used in research for over 50 years and was one of the first animals in which intracellular recordings of mechanosensory neurons were carried out. Remarkably, the leech has three main classes of mechanosensory neurons that exhibit many of the same properties found in vertebrates. The most sensitive of these neurons are the touch cells, which are rapidly adapting neurons that detect low-intensity mechanical stimuli. Next are the pressure cells, which are slow-adapting sensory neurons that respond to higher intensity, sustained mechanostimulation. Finally, there are nociceptive neurons, which have the highest threshold and respond to potentially damaging mechanostimuli, such as a pinch. As observed in mammals, the leech has separate mechanosensitive and polymodal nociceptors, the latter responding to mechanical, thermal, and chemical stimuli. The cell bodies for all three types of mechanosensitive neurons are found in the central nervous system where they are arranged as bilateral pairs. Each neuron extends processes to the skin where they form discrete receptive fields. In the touch and pressure cells, these receptive fields are arranged along the dorsal-ventral axis. For the mechano-only and polymodal nociceptive neurons, the peripheral receptive fields overlap with the mechano-only nociceptor, which also innervates the gut. The leech also has a type of mechanosensitive cell located in the periphery that responds to vibrations in the water and is used, in part, to detect potential prey nearby. In the central nervous system, the touch, pressure, and nociceptive cells all form synaptic connections with a variety of motor neurons, interneurons, and even each other, using glutamate as the neurotransmitter. Synaptic transmission by these cells can be modulated by a variety of activity-dependent processes as well as the influence of neuromodulatory transmitters, such as serotonin. The output of these sensory neurons can also be modulated by conduction block, a process in which action potentials fail to propagate to all the synaptic release sites, decreasing synaptic output. Activity in these sensory neurons leads to the initiation of a number of different motor behaviors involved in locomotion, such as swimming and crawling, as well as behaviors designed to recoil from aversive/noxious stimuli, such as local bending and shortening. In the case of local bending, the leech is able to bend in the appropriate direction away from the offending stimuli. It does so through a combination of which mechanosensory cell receptive fields have been activated and the relative activation of multiple sensory cells decoded by a layer of downstream interneurons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.