Abstract

The problem of communicating over the additive white Gaussian noise (AWGN) channel with lattice codes is addressed in this paper. Theoretically, Voronoi constellations have proved to yield very powerful lattice codes when the fine/coding lattice is AWGN-good and the coarse/shaping lattice has an optimal shaping gain. However, achieving Shannon capacity with these premises and practically implementable encoding algorithms is in general not an easy task. In this paper, a new way to encode and demap Construction-A Voronoi lattice codes is presented. As a meaningful application of this scheme, the second part of the paper is focused on Leech constellations of low-density Construction-A (LDA) lattices: LDA Voronoi lattice codes are presented whose numerically measured waterfall region is situated at less than 0.8 dB from Shannon capacity. These LDA lattice codes are based on dual-diagonal nonbinary low-density parity-check codes. With this choice, encoding, iterative decoding, and demapping have all linear complexity in the block length.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.