Abstract

Lee-Yang (LY) zeros play a fundamental role in the formulation of statistical physics in terms of (grand) partition functions, and assume theoretical significance for the phenomenon of phase transitions. In this paper, motivated by recent progress in cold Rydberg atom experiments, we explore the LY zeros in classical Rydberg blockade models. We find that the distribution of zeros of partition functions for these models in one dimension (1d) can be obtained analytically. We prove that all the LY zeros are real and negative for such models with arbitrary blockade radii. Therefore, no phase transitions happen in 1d classical Rydberg chains. We investigate how the zeros redistribute as one interpolates between different blockade radii. We also discuss possible experimental measurements of these zeros.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.