Abstract
We study the complexity of computing average quantities related to spin systems, such as the mean magnetization and susceptibility in the ferromagnetic Ising model, and the average dimer count (or average size of a matching) in the monomer-dimer model. By establishing connections between the complexity of computing these averages and the location of the complex zeros of the partition function, we show that these averages are #P-hard to compute, and hence, under standard assumptions, computationally intractable. In the case of the Ising model, our approach requires us to prove an extension of the famous Lee–Yang Theorem from the 1950s.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.