Abstract

The lee-wave amplitudes and wave drag for a thin barrier in a two-dimensional stratified flow in which the upstream dynamic pressure and density gradient are constant (Long's model) are determined as functions of barrier height and Froude number for a channel of finite height and for a half-space. Variational approximations to these quantities are obtained and validated by comparison with the earlier results of Drazin & Moore (1967) for the channel and with the results of an exact solution for the half-space, as obtained through separation of variables. An approximate solution of the integral equation for the channel also is obtained through a reduction to a singular integral equation of potential theory. The wave drag tends to increase with decreasing wind speed, but it seems likely that the flow is unstable in the region of high drag. The maximum attainable drag coefficient consistent with stable lee-wave formation appears to be roughly two and almost certainly less than three.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.