Abstract

Segmentation of the vertebrate body via the sequential formation of somites is an important process in embryogenesis. This sequential process is governed by the activation and regulation of Notch-related molecular oscillators by fibroblast growth factor and retinoic acid (RA) signaling. In this study, we identified ledgerline, a novel gene of Xenopus laevis expressed specifically in the presomitic mesoderm. Knockdown of ledgerline using antisense morpholino oligonucleotides shifted the developing somite front and altered the expression of genes that regulate molecular oscillation, including Delta2, ESR5, Hairy2a, and Thylacine1. Knockdown of ledgerline also downregulated RALDH-2 expression. Injection of RARalpha-CA, a constitutively active mutant of the RA receptor RARalpha, subsequently reduced the altered Thylacine1 expression. These results strongly suggest that ledgerline is essential for mesodermal RA activity and differentiation of the presomitic mesoderm during Xenopus somitogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.