Abstract

The asymmetric distribution of carbohydrate on biological membranes has provided the basis for the development of lectin-affinity methodology which permits the isolation of sealed, inside-out membrane fractions from heterogeneous populations of vesicles. Optimal conditions for these separations have been assessed employing purified right-side-out and inside-out vesicles derived from the plasma membrane of human erythrocytes as a model system. In this special case, homogeneous populations of defined polarity can be produced by varying the ionic conditions during formation of the vesicles. Surface-specific enzymic markers exist also for monitoring the integrity and orientation of a given population. Multivalent lectins such as wheat germ agglutinin and soya bean agglutinin, which induce direct agglutination of erythrocyte membrane fragments containing accessible carbohydrate residues, selectively remove more than 90% of right-side-out and non-sealed membrane from mixed population, a reaction which is inhibited by GluNAc or GalNAc, respectively. Non-agglutinating lectins, e.g. concanavalin A, immobilized on an inert matrix such as Sepharose 4B, may be employed to adsorb out specifically vesicles with exposed glycopeptides on their surface. In this technique, it is necessary normally to remove the non-sealed membranes on Dextran density gradients prior to the final preparation of inside-out vesicles on Con A-Sepharose. Finally, selective immunoprecipitation of fragments with accessible sugars may also be achieved after treatment with a non-agglutinating lectin (concanavalin A) followed by incubation with anti-concanavalin A IgG which promotes rapid aggregation of membrane containing exposed receptors for the lectin. These procedures should prove generally suitable for the isolation of tightly-sealed, inside-out membrane populations in a variety of biological systems. Pure populations of vesicles, exhibiting reversed polarity, are valuable in surface-labelling studies for investigating the structure, function and transmembrane distribution of integral membrane proteins/glycoproteins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.