Abstract

The relationship between rheumatoid arthritis and atherosclerosis has been recognized for >20 years. This study aimed to elucidate the roles of oxidized low-density lipoprotein (ox-LDL; one of the main pathogenic factors of atherosclerosis) and its endothelial receptor, lectin-like ox-LDL receptor 1 (LOX-1), in arthritic joints using a rat zymosan-induced arthritis (ZIA) model. LOX-1 expression and ox-LDL accumulation in arthritic joints were detected by immunohistochemistry using specific mouse anti-LOX-1 and anti-ox-LDL monoclonal antibodies, respectively. To elucidate the effects of the expressed LOX-1 on arthritis, ZIA rats were treated with anti-LOX-1 antibody or normal mouse IgG. The severity of arthritis was analyzed by joint swelling. Cell infiltration, synovial hyperplasia, and proteoglycan losses were also determined by histologic scoring. Proinflammatory cytokine and nitrite levels in serum and joint fluid were also measured. Immunohistochemical study of ZIA demonstrated LOX-1 expression on synovial endothelium and postcapillary venules at 6 hours after the induction of inflammation, with maximum expression detected at 24 hours. LOX-1 was also expressed weakly on both joint cartilage and synovium. Ox-LDL, a ligand of LOX-1, was also detected in articular chondrocytes. Administration of anti-LOX-1 antibody, which blocks LOX-1 activity, suppressed joint swelling (by 33.5%), leukocyte infiltration, and joint nitrite accumulation at 24 hours, as well as cartilage destruction at 7 days, compared with control rats. LOX-1 induction in arthritic joints might play a role in promoting joint inflammation and cartilage destruction by mediating leukocyte infiltration into the arthritic joints of ZIA rats.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.