Abstract

In order to take advantage of the biorecognition between lectins and specific carbohydrates for targeted drug delivery, fluorescein-labelled lectins of different carbohydrate specificities were screened for binding to human colorectal carcinoma cell lines by flow cytometry and confocal microscopy. The lectin-binding rate increased as follows: Dolichos biflorus agglutinin, DBA<peanut agglutinin, PNA< Lens culinaris agglutinin, LCA< Solanum tuberosum lectin, STL< Ulex europaeus isoagglutinin I, UEA-I<wheat germ agglutinin, WGA (Caco-2); PNA<UEA-I<WGA (HT-29); DBA<UEA-I<WGA (HCT-8), thus reflecting the glycosylation pattern of the cells. Compared to the BSA-binding capacity of the cells, the extent of nonspecific binding was strongly dependent on the type of cell line and lectin under investigation being lower than 2% in the case of WGA, STL and UEA-I/Caco-2 and HT-29 cells. Whereas 50% of DBA was bound nonspecifically to Caco-2 cells, the interactions DBA/HCT-8 and PNA/HT-29 were due to nonspecific binding. By competitive inhibition of lectin-adhesion to the cells upon addition of the complementary carbohydrate, specificity of lectin-binding was confirmed except for the interaction of DBA/HCT-8 and PNA/HT-29. Following on from this work, we consider WGA-, STL- and UEA-I-mediated drug delivery to be a promising approach for peroral bioadhesive formulations adhering to absorptive enterocytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call