Abstract
Olfaction is mediated by the vomeronasal and main olfactory systems, and the peripheral vomeronasal organ (VNO) processes species-specific chemicals that are associated with various behaviors in mammals. Sensory epithelial surfaces of the olfactory mucosa and VNO are covered by mucosal fluid that contains secretory products derived from associated glands, and glycoconjugates in the mucosal fluid are involved in odorant reception. The VNO of brown bears contains two types of glands; submucosal vomeronasal glands (VNG) and multicellular intraepithelial glands (MIG). The present study determined the labelling profiles of 21 lectins in the olfactory glands (OG), VNG and MIG of young male brown bears. The OG reacted with 12 lectins, and the VNG and MIG were positive for seven and eight lectins, respectively. Six lectins bound only to the OG, while four reacted with both or either of the VNG and MIG, but not the OG. The differences of lectin labelling pattern between the OG and glands in the VNO suggest that glycans in covering mucosal fluids differ between the olfactory mucosa and VNO. In addition, Bandeiraea simplicifolia lectin-I, Sophora japonica agglutinin and Jacalin reacted with the MIG but not the VNG, whereas Datura stramonium lectin and concanavalin A bound to the VNG, but not the MIG. These findings indicate that the properties of secretory substances differ between the two types of glands in the bear VNO, and that the various secretions from these two types of glands may function in the lumen of VNO together.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.