Abstract

Potential targets of Plasmodium ookinetes at the mosquito midgut walls were investigated in relation to interfering malarial transmission. In this study, the essential application of Quantum Dots (QDs) was used to examine the interaction between Plasmodium berghei ookinetes and the Anopheles stephensi midgut, based on lectin-carbohydrate recognition. Two significant lectins were utilized to determine this interaction.Two QDs, cadmium telluride (CdTe)/CdS and cadmium selenide (CdSe)/CdS, were employed in staining Plasmodium ookinete to study its interaction in the midgut of the mosquito vector in vivo. Concurrently, two lectins, wheat germ agglutinin (WGA) and concanavalin A (Con A), were inadvertently exploited to mask lectin binding sites between ookinetes and mosquito midgut cells. The numbers of ookinetes in both lumen and epithelial cells were eventually counted, following adequate preparation of wax sections extracted from whole midgut, and subsequent examination using a differential interference contrast a fluorescence microscopic technique.Interestingly, we detected that neither of the QDs mutated ookinete invasion into the midgut cells of the investigated mosquitoes. QD staining of ookinetes remained permanent despite the effective embedding procedure. The massive binding potency of ookinetes to midgut cells of the cross-examined mosquitoes undoubtedly revealed that Con A did not interrupt ookinete penetration into the midgut wall. In contrast, WGA inhibited ookinete invasion into the midgut cells. The results proved that QD nanoparticles are biocompatible, non-toxic to P. berghei and stable to photobleaching. The QDs staining, which was successfully implemented for ookinete labelling, is a simple and effective tool which plays a crucial role in bioimaging including the study of parasite-vector interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.