Abstract

Pancreatic ductal adenocarcinoma (PDAC) is resistant to current treatments but lectin-based therapy targeting cell surface glycans could be a promising new horizon. Here, we report a novel lectin-based phototherapy (Lec-PT) that combines the PDAC targeting ability of rBC2LCN lectin to a photoabsorber, IRDye700DX (rBC2-IR700), resulting in a novel and highly specific near-infrared, light-activated, anti-PDAC therapy. Lec-PT cytotoxicity was first verified in vitro with a human PDAC cell line, Capan-1, indicating that rBC2-IR700 is only cytotoxic upon cellular binding and exposure to near-infrared light. The therapeutic efficacy of Lec-PT was subsequently verified in vivo using cell lines and patient-derived, subcutaneous xenografting into nude mice. Significant accumulation of rBC2-IR700 occurs as early as 2hours postintravenous administration while cytotoxicity is only achieved upon exposure to near-infrared light. Repeated treatments further slowed tumor growth. Lec-PT was also assessed for off-target toxicity in the orthotopic xenograft model. Shielding of intraperitoneal organs from near-infrared light minimized off-target toxicity. Using readily available components, Lec-PT specifically targeted pancreatic cancer with high reproducibility and on-target, inducible toxicity. Rapid clinical development of this method is promising as a new modality for treatment of pancreatic cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call