Abstract

Leatherback sea turtles, Dermochelys coriacea, are highly migratory predators that feed exclusively on gelatinous zooplankton, thus playing a unique role in coastal and pelagic food webs. From 2007 to 2010, we used satellite telemetry to monitor the movements and dive behavior of nine adult and eleven subadult leatherbacks captured on the Northeast USA shelf and tracked throughout the Northwest Atlantic. Leatherback movements and environmental associations varied by oceanographic region, with slow, sinuous, area-restricted search behavior and shorter, shallower dives occurring in cool (median sea surface temperature: 18.4°C), productive (median chlorophyll a: 0.80 mg m−3), shallow (median bathymetry: 57 m) shelf habitat with strong sea surface temperature gradients (median SST gradient: 0.23°C km−1) at temperate latitudes. Leatherbacks were highly aggregated in temperate shelf and slope waters during summer, early fall, and late spring and more widely dispersed in subtropical and tropical oceanic and neritic habitat during late fall, winter and early spring. We investigated the relationship of ecoregion, satellite-derived surface chlorophyll, satellite-derived sea surface temperature, SST gradient, chlorophyll gradient and bathymetry with leatherback search behavior using generalized linear mixed-effects models. The most well supported model showed that differences in leatherback search behavior were best explained by ecoregion and regional differences in bathymetry and SST. Within the Northwest Atlantic Shelves region, leatherbacks increased path sinuosity (i.e., looping movements) with increasing SST, but this relationship reversed within the Gulf Stream region. Leatherbacks increased path sinuosity with decreasing water depth in temperate and tropical shelf habitats. This relationship is consistent with increasing epipelagic gelatinous zooplankton biomass with decreasing water depth, and bathymetry may be a key feature in identifying leatherback foraging habitat in neritic regions. High-use habitat for leatherbacks in our study occurred in coastal waters of the North American eastern seaboard and eastern Caribbean, putting turtles at heightened risk from land- and ocean-based human activity.

Highlights

  • Migratory marine predators such as leatherback sea turtles encounter a diversity of habitats during their long-distance movements

  • The breakaway hoopnet was deployed from a modified bowsprit on commercial fishing or research vessels, and the net was pursed over individual turtles at the surface

  • Satellite telemetry We received data from all tagged leatherbacks: four tags transmitted for less time than expected and 16 tags met or exceeded predicted battery life

Read more

Summary

Introduction

Migratory marine predators such as leatherback sea turtles encounter a diversity of habitats during their long-distance movements. Predators may exhibit different behaviors in response to region-specific environmental conditions, with some regions optimal for foraging and (or) breeding while others serve as migratory habitat between breeding and feeding grounds. Studies often rely on measures of search behavior to distinguish foraging from transiting, with the underlying assumption that a foraging animal should increase time and search effort in resource-rich areas (i.e., area-restricted search behavior) and decrease search effort in areas with fewer resources [2]. Marine animal tracking data has been used to measure area-restricted search behavior through analyses of speed, turning angle, path straightness and first passage time [3,4,5], while switching state-space models have been used to statistically estimate animal behavioral modes (e.g., foraging vs transiting) [6,7,8]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call