Abstract

Summary Iterative data-domain least-squares migration can overcome acquisition limitations and recover the reflectivity for desired amplitudes and resolutions. However, migration noise due to velocity errors and multiple scattering energy related to strong contrasts in the velocity model can be erroneously enhanced as well. In this complex case, many extra iterations are needed to achieve the final desired image. Regularization can be applied at each least-squares iteration in order to suppress migration artifacts and improve inversion efficiency. However, in sedimentary layers, without proper fault constraints, the regularization cannot preserve the real geological features in the image. In this work, we propose to use convolutional neural networks (CNNs) to automatically detect faults on the migration image first, and then to use the picked fault information as a weighting function for regularization during least-squares migration. With proper training, our 3D predictive model can learn to detect true fault features and avoid erroneous picks of swing noise on the validation dataset. An offshore Brazil field data example in the Santos Basin demonstrates that our final least-squares migration images show enhanced fault structure, minimized migration artifacts, significantly increased image bandwidth and improved illumination after only a few iterations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.