Abstract
We have used least-squares migration to emphasize edge diffractions. The inverted forward-modeling operator is the chain of three operators: Kirchhoff modeling, azimuthal plane-wave destruction, and the path-summation integral filter. Azimuthal plane-wave destruction removes reflected energy without damaging edge-diffraction signatures. The path-summation integral guides the inversion toward probable diffraction locations. We combine sparsity constraints and anisotropic smoothing in the form of shaping regularization to highlight edge diffractions. Anisotropic smoothing enforces continuity along edges. Sparsity constraints emphasize diffractions perpendicular to edges and have a denoising effect. Synthetic and field data examples illustrate the effectiveness of the proposed approach in denoising and highlighting edge diffractions, such as channel edges and faults.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.