Abstract

Deformation quantization generally produces families of cohomologically equivalent quantizations of a single physical system. We conjecture that the physically meaningful ones (i) allow enough observable energy distributions, i.e., ones for which no pure quantum state has negative probability, and (ii) reduce the uncertainty in the probability distribution of the resulting quantum states. For the simple harmonic oscillator this principle selects the classic Groenewold-Moyal (or Weyl) product on phase space while for the free particle, in which there is no real quantization, all cohomologically equivalent quantizations are equally good.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.