Abstract

The accuracy of a least square support vector machine (LSSVM) in modeling of reference evapotranspiration (ET0) was examined in this study. The daily weather data, solar radiation, air temperature, relative humidity and wind speed of two stations, Glendale and Oxnard, in southern district of California, were used as inputs to the LSSVM models to estimate ET0 obtained using the FAO-56 Penman–Monteith equation. In the first part of the study, LSSVM estimates were compared with those of the following empirical models: Priestley–Taylor, Hargreaves and Ritchie methods. The comparison results indicated that the LSSVM performed better than the empirical models. In the second part of the study, the LSSVM results were compared with those of the conventional feed-forward artificial neural networks (ANN). It was found that the LSSVM models were superior to the ANN in modeling ET0 process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.