Abstract
Abstract In this paper, we use superconducting gravimeter (SG) data recorded at three stations of the global geodynamics project (GGP) network, with good geographical distribution, to search for possible significant peaks in the gravity spectrum that are in the assumed period range of the Slichter triplet. Seven-year long series from Cantley (Canada), and four-year long series from both Canberra (Australia) and Moxa (Germany) stations are used. First, a solid Earth and ocean tide model is subtracted from the data, followed by a local atmospheric pressure correction based on a frequency-, and location-dependent admittance estimated by the least squares response method. Subsequently, the residual series are filtered with a Parzen-based bandpass filter with a passband (12 h–78 s). A sub-nGal detection level is confirmed by injecting an artificial sine wave of different amplitudes. The Least Squares Self-Coherency spectrum shows the existence of many apparently statistically significant peaks at the 95% confidence level in the band (3–8 h). Although a few peaks are close to the claimed Slichter periods in previous research, the large number of candidate peaks may be related to other mechanisms such as global pressure variations, or hydrology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.