Abstract

An array of n sensors at known locations receives the signal from an emitter whose location is desired. By measuring the time differences of arrival (TDOAs) between pairs of sensors, the range differences (RDs) are available and it becomes possible to compute the emitter location. Traditionally geometric solutions have been based on intersections of hyperbolic lines of position (LOPs). Each measured TDOA provides one hyperbolic LOP. In the absence of measurement noise, the RDs taken around any closed circuit of sensors add to zero. A bivector is introduced from exterior algebra such that when noise is present, the measured bivector of RDs is generally infeasible in that there does not correspond any actual emitter position exhibiting them. A circuital sum trivector is also introduced to represent the infeasibility; a null trivector implies a feasible RD bivector. A 2-step RD Emitter Location algorithm is proposed which exploits this implicit structure. Given the observed noisy RD bivector /spl Delta/, (1) calculate the nearest feasible RD bivector /spl Delta//spl circ/, and (2) calculate the nearest point to the (/sub 3//sup n/) planes of position, one for each of the triads of elements of /spl Delta//spl circ/. Both algorithmic steps are least squares (LS) and finite. Numerical comparisons in simulation show a substantial improvement in location error variances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.