Abstract

A new procedure is demonstrated for optimizing hypersonic wind-tunnel-nozzle contours. The procedure couples a CFD computer code to an optimization algorithm, and is applied to both conical and contoured hypersonic nozzles for the purpose of determining an optimal set of parameters to describe the surface geometry. A design-objective function is specified based on the deviation from the desired test-section flow-field conditions. The objective function is minimized by optimizing the parameters used to describe the nozzle contour based on the solution to a nonlinear least-squares problem. The effect of the changes in the nozzle wall parameters are evaluated by computing the nozzle flow using the parabolized Navier-Stokes equations. The advantage of the new procedure is that it directly takes into account the displacement effect of the boundary layer on the wall contour. The new procedure provides a method for optimizing hypersonic nozzles of high Mach numbers which have been designed by classical procedures, but are shown to produce poor flow quality due to the large boundary layers present in the test section. The procedure is demonstrated by finding the optimum design parameters for a Mach 10 conical nozzle and a Mach 6 and a Mach 15 contoured nozzle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.