Abstract

Because of amplitude decay and phase dispersion of seismic waves, conventional migrations are insufficient to produce satisfactory images using data observed in highly attenuative geologic environments. We have developed a least-squares Gaussian beam migration method for viscoacoustic data imaging, which can not only compensate for amplitude decay and phase dispersion caused by attenuation, but it can also improve image resolution and amplitude fidelity through linearized least-squares inversion. We represent the viscoacoustic Green’s function by a summation of Gaussian beams, in which an attenuation traveltime is incorporated to simulate or compensate for attenuation effects. Based on the beam representation of the Green’s function, we construct the viscoacoustic Born forward modeling and adjoint migration operators, which can be effectively evaluated by a time-domain approach based on a filter-bank technique. With the constructed operators, we formulate a least-squares migration scheme to iteratively solve for the optimal image. Numerical tests on synthetic and field data sets demonstrate that our method can effectively compensate for the attenuation effects and produce images with higher resolution and more balanced amplitudes than images from acoustic least-squares Gaussian beam migration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.