Abstract

Solid phase diffusivity Ds is a key parameter in Lithium-Ion cell models because solid phase diffusion typically dominates the voltage transients. The Galvanostatic Intermittent Titration Technique (GITT) is easy to implement and universally accepted as the standard for diffusivity measurement, but the accuracy of GITT diffusivity measurement is unknown. This paper develops a Least Squares GITT (LS-GITT) that uses all of the voltage data from a GITT test to optimally tune the diffusivity in a reduced order solid phase diffusion model. The accuracies of the GITT and LS-GITT diffusivity measurements are evaluated using the RMS error between the model predicted and experimentally measured voltages. Based on experimental results from a NCM half cell, LS-GITT is more accurate than GITT, often by an order of magnitude. The GITT test overestimates Ds because the underlying model neglects the effects of bulk capacity on the voltage transients. LS-GITT gives results accurate to 1 mV RMS from 15%–100% SOC where GITT provides the same level of accuracy over less than half that SOC range. Neither technique provides accurate Ds measurements below 10% SOC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.