Abstract
A discrete ordinates finite-element method for solving three-dimensional first-order neutron transport equation is proposed using a least-squares variation. It avoids the singularity in void regions of the method derived from the second-order equation. Different from using the standard Galerkin variation applying to the first-order equation, the least-squares variation results in a symmetric matrix, which can be solved easily and effectively. The approach allows a continuous finite-element. To eliminate the discontinuity of the angular flux on the fixed flux boundary in the spherical harmonics method, the equation is discretized using the discrete ordinates method for angular dependency. A three-dimensional transport simulation code is developed and applied to some benchmark problems with unstructured geometry. The numerical results demonstrate the accuracy and feasibility of the method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.