Abstract

In many applications of computer vision, the following problem is encountered. Two point patterns (sets of points) (x/sub i/) and (x/sub i/); i=1, 2, . . ., n are given in m-dimensional space, and the similarity transformation parameters (rotation, translation, and scaling) that give the least mean squared error between these point patterns are needed. Recently, K.S. Arun et al. (1987) and B.K.P. Horn et al. (1987) presented a solution of this problem. Their solution, however, sometimes fails to give a correct rotation matrix and gives a reflection instead when the data is severely corrupted. The proposed theorem is a strict solution of the problem, and it always gives the correct transformation parameters even when the data is corrupted.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.