Abstract

In recent years, astronomical photometry has been revolutionised by space missions such as MOST, CoRoT and Kepler. However, despite this progress, high-quality spectroscopy is still required as well. Unfortunately, high-resolution spectra can only be obtained using ground-based telescopes, and since many interesting targets are rather faint, the spectra often have a relatively low S/N. Consequently, we have developed an algorithm based on the least-squares deconvolution profile, which allows to reconstruct an observed spectrum, but with a higher S/N. We have successfully tested the method using both synthetic and observed data, and in combination with several common spectroscopic applications, such as e.g. the determination of atmospheric parameter values, and frequency analysis and mode identification of stellar pulsations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.