Abstract
AbstractThe least squares collocation (LESCO) method has been formulated to solve differential equations defined over irregular domains using a more convenient orthogonal computational mesh. The LESCO method is described in detail for second‐order boundary value problems and applied to the time‐dependent diffusion and advection‐diffusion equations defined over two‐dimensional irregular domains. Particular attention is given to the proper procedure for applying boundary conditions. Accuracy, convergence, and consistency are examined. For cubic elements with arbitrary location of collocation points, the convergence rate is between 3rd and 4th order. The major advantages of this method are reduced input data requirements, a more robust procedure for forming the equations, positive definite matrices, and flexibility in distrbuting errors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Numerical Methods for Partial Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.