Abstract

This paper presents a novel calibration approach for determining the mapping relationship between the depth map and the phase difference in fringe projection profilometry. This approach is based on a simple nonlinear function, which is deduced by analyzing the geometry of measurement system and hence perfectly describes the mapping between the depth map and the phase-difference distribution. The calibration is implemented by translating a target plane to a sequence of given positions with known depths, and measuring its phase distributions. A least-squares estimation algorithm with linear computation is deduced to retrieve the related parameters and to reconstruct the mapping function. Both computer simulation and experiment are carried out to demonstrate the validity of this technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.