Abstract

As readers know, polynomials of degree n, in other words linear combinations of n + 1 monomials 1,…, t n , may have at most n real zeros. A far-reaching generalization of this fact raises a fundamental concept of Chebyshev systems, briefly, T-systems. Those systems are defined as follows. For a set (or system) of functions F = {f 0,…}, a linear combination of a finite number of elements, f = ∑c i f i , is called a polynomial on F (considered nonzero when ∃i: c i ≠ 0). A system of n + 1 function F = {f 0,…,f n } on an interval (or a half-interval, or a non-one-point segment) I ⊆ ℝ is referred to as T-system, when nonzero polynomials on F may have at most n distinct zeros in I (zeros of extensions outside I are not counted). The basic ideas of the theory of T-systems may be understood by readers with relatively limited experience. In this chapter we focus both on these ideas and on some nice applications of this theory such as estimation of numbers of zeros and critical points of functions (in analysis and geometry), a real-life problem in tomography, interpolation theory, approximation theory, and least squares.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call