Abstract

This article proposes a new method for the estimation of the parameters of a simple linear regression model which is based on the minimization of a quartic loss function. The aim is to extend the traditional methodology, based on the normality assumption, to also take into account higher moments and to provide a measure for situations where the phenomenon is characterized by strong non-Gaussian distribution like outliers, multimodality, skewness and kurtosis. Although the proposed method is very general, along with the description of the methodology, we examine its application to finance. In fact, in this field, the contribution of the co-moments in explaining the return-generating process is of paramount importance when evaluating the systematic risk of an asset within the framework of the Capital Asset Pricing Model. We also illustrate a Monte Carlo test of significance on the estimated slope parameter and an application of the method based on the top 300 market capitalization components of the STOXX® Europe 600. A comparison between the slope coefficients evaluated using the ordinary Least Squares (LS) approach and the new Least Quartic (LQ) technique shows that the perception of market risk exposure is best captured by the proposed estimator during market turmoil, and it seems to anticipate the market risk increase typical of these periods. Moreover, by analyzing the out-of-sample risk-adjusted returns we show that the proposed method outperforms the ordinary LS estimator in terms of the most common performance indices. Finally, a bootstrap analysis suggests that significantly different Sharpe ratios between LS and LQ yields and Value at Risk estimates can be considered more accurate in the LQ framework. This study adds insights into market analysis and helps in identifying more precisely potentially risky assets whose extreme behavior is strongly dependent on market behavior.

Highlights

  • Traditional linear regression models based on the normality assumption neglect any role in the higher moments of the underlying distribution

  • We propose a new linear regression estimation criterion, the Least Quartic criterion, which is based on a quartic loss function in place of the usual quadratic specification considered in the ordinary Least Squares (LS)

  • To assess the statistical significance of the difference in Sharpe ratios among the linear and quartic estimators, we provide a two-sided p-value which is evaluated using the bootstrapping methodology suggested by Ledoit and Wolf (2008)

Read more

Summary

Introduction

Traditional linear regression models based on the normality assumption neglect any role in the higher moments of the underlying distribution. This approach is not justified in many situations where the phenomenon is characterized by strong non-normality like outliers, multimodality, skewness and kurtosis. Many papers in the financial literature heavily criticize such an approach emphasizing the role of co-moments to account for non-normal extreme events in investors’ decisions. Such an approach leads to a series of modifications that incorporate the consideration of higher moments of the distribution of returns (Barone-Adesi et al 2004). For an application to financial data, see (Nikoloulopoulos et al 2012)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.