Abstract

We propose a least‐mean‐square (LMS) receding horizon (RH) estimator for state estimation. The proposed LMS RH estimator is obtained from the conditional expectation of the estimated state given a finite number of inputs and outputs over the recent finite horizon. Any a priori state information is not required, and existing artificial constraints for easy derivation are not imposed. For a general stochastic discrete‐time state space model with both system and measurement noise, the LMS RH estimator is explicitly represented in a closed form. For numerical reliability, the iterative form is presented with forward and backward computations. It is shown through a numerical example that the proposed LMS RH estimator has better robust performance than conventional Kalman estimators when uncertainties exist.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.