Abstract

In this paper, we are concerned with the existence of least energy solutions of nonlinear Schrodinger equations involving the half Laplacian \begin{eqnarray} (-\Delta)^{1/2}u(x)+\lambda V(x)u(x)=u(x)^{p-1}, u(x)\geq 0, \quad x\in R^N, \end{eqnarray} for sufficiently large $\lambda$, $2 < p < \frac{2N}{N-1}$ for $N \geq 2$. $V(x)$ is a real continuous function on $R^N$. Using variational methods we prove the existence of least energy solution $u(x)$ which localize near the potential well int$(V^{-1}(0))$ for $\lambda$ large. Moreover, if the zero sets int$(V^{-1}(0))$ of $V(x)$ include more than one isolated components, then $u_\lambda(x)$ will be trapped around all the isolated components. However, in Laplacian case, when the parameter $\lambda$ large, the corresponding least energy solution will be trapped around only one isolated component and become arbitrary small in other components of int$(V^{-1}(0))$. This is the essential difference with the Laplacian problems since the operator $(-\Delta)^{1/2}$ is nonlocal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call