Abstract

We study existence, regularity, and qualitative properties of solutions to the system−Δu=|v|q−1v in Ω,−Δv=|u|p−1u in Ω,∂νu=∂νv=0 on ∂Ω, with Ω⊂RN bounded; in this setting, all nontrivial solutions are sign changing. Our proofs use a variational formulation in dual spaces, considering sublinear pq<1 and superlinear pq>1 problems in the subcritical regime. In balls and annuli we show that least energy solutions (l.e.s.) are foliated Schwarz symmetric and, due to a symmetry-breaking phenomenon, l.e.s. are not radial functions; a key element in the proof is a new Lt-norm-preserving transformation, which combines a suitable flipping with a decreasing rearrangement. This combination allows us to treat annular domains, sign-changing functions, and Neumann problems, which are non-standard settings to use rearrangements and symmetrizations. In particular, we show that our transformation diminishes the (dual) energy and, as a consequence, radial l.e.s. are strictly monotone. We also study unique continuation properties and simplicity of zeros. Our theorems also apply to the scalar associated model, where our approach provides new results as well as alternative proofs of known facts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.