Abstract

Let M be a Riemannian manifold and let F be a closed surface. A map f: F---,M is called least area if the area of f is less than the area of any homotopic map from F to M. Note that least area maps are always minimal surfaces, but that in general minimal surfaces are not least area as they represent only local stationary points for the area function. The existence of least area immersions in a homotopy class of maps has been established when the homotopy class satisfies certain injectivity conditions on the fundamental group [18, 17]. In this paper we shall consider the possible singularities of such immersions. Our results show that the general philosophy is that least area surfaces intersect least, meaning that the intersections and self-intersections of least area immersions are as small as their homotopy classes allow, when measured correctly. One should note that evidence supporting this view had been found by Meeks-Yau in their embedding theorems for minimal disks and 2-spheres [13, 143 . Our main result asserts that if a least area immersion is homotopic to an embedding, then it has no self-intersections, which clearly exemplifies the above philosophy. The precise result is the following.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.