Abstract
A Connectivity-constrained based path planning for unmanned aerial vehicles (UAVs) is proposed within the coverage area of a 5G NR Base Station (BS) that uses mmWave technology. We consider an uplink communication between UAV and BS under multipath channel conditions for this problem. The objective is to guide a UAV, starting from a random location and reaching its destination within the BS coverage area, by learning a trajectory alongside achieving better connectivity. We propose simultaneous learning-based path planning of UAV and beam tracking at the BS side under urban macro-cellular(UMa) pathloss conditions, to reduce its sweeping time with apriori computational overhead using the deep reinforcement learning method such as Deep Q-Network (DQN). Our results show that our proposed learning-based joint path planning and beam tracking method is on par with the learning-based shortest path planning, besides beam tracking comparable to heuristic exhaustive beam searching method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.