Abstract
Wireless-connected Virtual Reality (VR) provides immersive experience for VR users from anywhere at anytime. However, providing wireless VR users with seamless connectivity and real-time VR video with high quality is challenging due to its requirements in high Quality of Experience (QoE) and low VR interaction latency under limited computation capability of VR device. To address these issues, we propose a MEC-enabled wireless VR network, where the field of view (FoV) of each VR user can be real-time predicted using Recurrent Neural Network (RNN), and the rendering of VR content is moved from VR device to MEC server with rendering model migration capability. Taking into account the geographical and FoV request correlation, we propose centralized and distributed decoupled Deep Reinforcement Learning (DRL) strategies to maximize the long-term QoE of VR users under the VR interaction latency constraint. Simulation results show that our proposed MEC rendering schemes and DRL algorithms substantially improve the long-term QoE of VR users and reduce the VR interaction latency compared to rendering at VR devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.