Abstract

This paper presents a Learning-based Nonlinear Model Predictive Control (LB-NMPC) algorithm for an autonomous mobile robot to reduce path-tracking errors over repeated traverses along a reference path. The LB-NMPC algorithm uses a simple a priori vehicle model and a learned disturbance model. Disturbances are modelled as a Gaussian Process (GP) based on experience collected during previous traversals as a function of system state, input and other relevant variables. Modelling the disturbance as a GP enables interpolation and extrapolation of learned disturbances, a key feature of this algorithm. Localization for the controller is provided by an on-board, vision-based mapping and navigation system enabling operation in large-scale, GPS-denied environments. The paper presents experimental results including over 1.8 km of travel by a four-wheeled, 50 kg robot travelling through challenging terrain (including steep, uneven hills) and by a six-wheeled, 160 kg robot learning disturbances caused by unmodelled dynamics at speeds ranging from 0.35 m/s to 1.0 m/s. The speed is scheduled to balance trial time, path-tracking errors, and localization reliability based on previous experience. The results show that the system can start from a generic a priori vehicle model and subsequently learn to reduce vehicle- and trajectory-specific path-tracking errors based on experience.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call