Abstract
Integrating the blockchain technology into mobile-edge computing (MEC) networks with multiple cooperative MEC servers (MECS) providing a promising solution to improving resource utilization, and helping establish a secure reward mechanism that can facilitate load balancing among MECS. In addition, intelligent management of service caching and load balancing can improve the network utility in MEC blockchain networks with multiple types of workloads. In this paper, we investigate a learning-based joint service caching and load balancing policy for optimizing the communication and computation resources allocation, so as to improve the resource utilization of MEC blockchain networks. We formulate the problem as a challenging long-term network revenue maximization Markov decision process (MDP) problem. To address the highly dynamic and high dimension of system states, we design a joint service caching and load balancing algorithm based on the double-dueling Deep Q network (DQN) approach. The simulation results validate the feasibility and superior performance of our proposed algorithm over several baseline schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.