Abstract

In this article, a unified learning-based approach is introduced to solve inverse scattering problems (ISPs) with mixed boundary conditions (BCs). The scattering behavior of hybrid dielectric and perfect electric conductors (PEC) scatterers is modeled by the T-matrix method. A rough image of the zero-order T-matrix coefficients for unknown scatterers is first reconstructed by the backpropagation (BP) method, which is then refined by an attention-assisted pix2pix generative adversarial network (GAN). The spatial attention mechanism is utilized to enforce the generator network to learn salient features of the unknown scatterers instead of the background. The adversarial training of the generator and the discriminator further enables the reconstructed image to be constrained by high-level features of reference scatterers. Numerical tests on both synthetic and experimental data verify the superior performance of the proposed method for ISP reconstructions with hybrid scatterers. It effectively expands the application scope of learning-based ISP methods to reconstruct scatterers without knowing the BCs of scatterers in advance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.