Abstract
Extensive research has been conducted on image steganography and watermarking algorithms, owing to their crucial rules in secret data transmission, copyright protection, and traceability. Despite promising results and numerous surveys proposed in the literature, there is still a lack of comprehensive analysis dedicated to deep learning-based image steganography and watermarking algorithms. In this paper, we focus on investigating three important aspects: neural networks, structure models, and training strategies. Our review covers the vast literature in this field. Furthermore, we provide a comprehensive statistical analysis from diverse perspectives, including models, loss functions, platforms, datasets, and attacks. Moreover, we conduct in a thorough comparative analysis and evaluation of existing representative algorithms, assessing their effectiveness within the context of deep learning. Finally, the challenges and potential research directions in the domain of deep-learning image steganography and watermarking algorithms are discussed to facilitate future research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.