Abstract

Ultrasound (US) images have been widely used in the diagnosis of breast cancer in particular. While experienced doctors may locate the tumor regions in a US image manually, it is highly desirable to develop algorithms that automatically detect the tumor regions in order to assist medical diagnosis. In this paper, we propose a novel algorithm for automatic detection of breast tumors in US images. We formulate the tumor detection as a two step learning problem: tumor localization by bounding box and exact boundary delineation. Specifically, the proposed method uses an AdaBoost classifier on Harr-like features to detect a preliminary set of tumor regions. The preliminarily detected tumor regions are further screened with a support vector machine using quantized intensity features. Finally, the random walk segmentation algorithm is performed on the US image to retrieve the boundary of each detected tumor region. The proposed method has been evaluated on a data set containing 112 breast US images, including histologically confirmed 80 diseased ones and 32 normal ones. The data set contains one image from each patient and the patients are from 31 to 75 years old. Experiments demonstrate that the proposed algorithm can automatically detect breast tumors, with their locations and boundary shapes retrieved with high accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.