Abstract

We present a framework based on convex optimization and spectral regularization to perform learning when feature observations are multidimensional arrays (tensors). We give a mathematical characterization of spectral penalties for tensors and analyze a unifying class of convex optimization problems for which we present a provably convergent and scalable template algorithm. We then specialize this class of problems to perform learning both in a transductive as well as in an inductive setting. In the transductive case one has an input data tensor with missing features and, possibly, a partially observed matrix of labels. The goal is to both infer the missing input features as well as predict the missing labels. For induction, the goal is to determine a model for each learning task to be used for out of sample prediction. Each training pair consists of a multidimensional array and a set of labels each of which corresponding to related but distinct tasks. In either case the proposed technique exploits precise low multilinear rank assumptions over unknown multidimensional arrays; regularization is based on composite spectral penalties and connects to the concept of Multilinear Singular Value Decomposition. As a by-product of using a tensor-based formalism, our approach allows one to tackle the multi-task case in a natural way. Empirical studies demonstrate the merits of the proposed methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.