Abstract

Fine-grained entity typing (FET) is a fundamental task for various entity-leveraging applications. Although great success has been made, existing systems still have challenges in handling noisy samples in training data introduced by distant supervision methods. To address these noise, previous studies either focus on processing the clean samples (i,e., have only one label) and noisy samples (i,e., have multiple labels) with different strategies or filtering the noisy labels based on the assumption that the distantly-supervised label set certainly contains the correct type label. In this paper, we propose a probabilistic automatic relabeling method which treats all training samples uniformly. Our method aims to estimate the pseudo-truth label distribution of each sample, and the pseudo-truth distribution will be treated as part of trainable parameters which are jointly updated during the training process. The proposed approach does not rely on any prerequisite or extra supervision, making it effective on real applications. Experiments on several benchmarks show that our method outperforms previous approaches and alleviates the noisy labeling problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.