Abstract
Jensen-type [Jensen-Shannon (JS) and Jensen-Tsallis] kernels were first proposed by Martins et al. (2009). These kernels are based on JS divergences that originated in the information theory. In this paper, we extend the Jensen-type kernels on probability measures to define positive-definite kernels on Euclidean space. We show that the special cases of these kernels include dot-product kernels. Since Jensen-type divergences are multidistribution divergences, we propose their multipoint variants, and study spectral clustering and kernel methods based on these. We also provide experimental studies on benchmark image database and gene expression database that show the benefits of the proposed kernels compared with the existing kernels. The experiments on clustering also demonstrate the use of constructing multipoint similarities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on neural networks and learning systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.