Abstract

We propose a principled framework for learning with infinitely many features, situations that are usually induced by continuously parametrized feature extraction methods. Such cases occur for instance when considering Gabor-based features in computer vision problems or when dealing with Fourier features for kernel approximations. We cast the problem as the one of finding a finite subset of features that minimizes a regularized empirical risk. After having analyzed the optimality conditions of such a problem, we propose a simple algorithm which has the flavour of a column-generation technique. We also show that using Fourier-based features, it is possible to perform approximate infinite kernel learning. Our experimental results on several datasets show the benefits of the proposed approach in several situations including texture classification and large-scale kernelized problems (involving about 100 thousand examples).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.