Abstract

One of the main difficulties in real-world data classification and analysis tasks is that the data distribution can be imbalanced. In this paper, a variant of the supervised learning neural network from the Adaptive Resonance Theory (ART) family, i.e., Fuzzy ARTMAP (FAM) which is equipped with a conflict-resolving facility, is proposed to classify an imbalanced dataset that represents a real problem in the semiconductor industry. The FAM model is combined with the Dynamic Decay Adjustment (DDA) algorithm to form a hybrid FAMDDA network. The classification results of FAM and FAMDDA are presented, compared, and analyzed using several classification metrics. The outcomes positively indicate the effectiveness of the proposed FAMDDA network in undertaking classification problems with imbalanced datasets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.