Abstract
Compared to camera image-based methods, radio frequency (RF) based pose estimation has great potential for use in situations where the field of view is obstructed. In this paper, we present a novel RF-based Pose Estimation framework with Transformer (RPET) that operates in a fully end-to-end fashion and uses an easy-to-install portable radar. RPET eliminates the need for complex preprocessing and hand-crafted post-processing modules, such as region-of-interest (RoI) cropping, non-maximum suppression (NMS), and keypoint grouping. We also introduce a novel concept called Visual Clue (VC), which mimics a pose feature represented in image-based methods and improves the learning performance of multi-person pose estimation from RF signals. Our experimental results demonstrate the effectiveness of VC and the generalizability of our model to different environmental conditions, including changes in location and obstructed views.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.