Abstract
Abstract With the rise of deep reinforcement learning (RL) methods, many complex robotic manipulation tasks are being solved. However, harnessing the full power of deep learning requires large datasets. Online RL does not suit itself readily into this paradigm due to costly and time-consuming agent-environment interaction. Therefore, many offline RL algorithms have recently been proposed to learn robotic tasks. But mainly, all such methods focus on a single-task or multitask learning, which requires retraining whenever we need to learn a new task. Continuously learning tasks without forgetting previous knowledge combined with the power of offline deep RL would allow us to scale the number of tasks by adding them one after another. This paper investigates the effectiveness of regularisation-based methods like synaptic intelligence for sequentially learning image-based robotic manipulation tasks in an offline-RL setup. We evaluate the performance of this combined framework against common challenges of sequential learning: catastrophic forgetting and forward knowledge transfer. We performed experiments with different task combinations to analyse the effect of task ordering. We also investigated the effect of the number of object configurations and the density of robot trajectories. We found that learning tasks sequentially helps in the retention of knowledge from previous tasks, thereby reducing the time required to learn a new task. Regularisation-based approaches for continuous learning, like the synaptic intelligence method, help mitigate catastrophic forgetting but have shown only limited transfer of knowledge from previous tasks.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.