Abstract

3D object retrieval has attracted extensive research efforts and become an important task in recent years. It is noted that how to measure the relevance between 3D objects is still a difficult issue. Most of the existing methods employ just the model-based or view-based approaches, which may lead to incomplete information for 3D object representation. In this paper, we propose to jointly learn the view-model relevance among 3D objects for retrieval, in which the 3D objects are formulated in different graph structures. With the view information, the multiple views of 3D objects are employed to formulate the 3D object relationship in an object hypergraph structure. With the model data, the model-based features are extracted to construct an object graph to describe the relationship among the 3D objects. The learning on the two graphs is conducted to estimate the relevance among the 3D objects, in which the view/model graph weights can be also optimized in the learning process. This is the first work to jointly explore the view-based and model-based relevance among the 3D objects in a graph-based framework. The proposed method has been evaluated in three data sets. The experimental results and comparison with the state-of-the-art methods demonstrate the effectiveness on retrieval accuracy of the proposed 3D object retrieval method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.