Abstract
ANN or artificial neural network is a way to solve various kinds of problems to make decisions based on training. One of the methods of JSt which contains competitive and supervised learning. Where this layer will automatically learn the classification of the closest input distances and will be distributed to the same class. there are 2 types of coffee beans that are famous in the world, namely arabica and robusta, for some people or the layman it will be very difficult to distinguish these 2 types of coffee beans apart from the fact that the shape is almost the same the color looks almost the same but there are a number of differences in the two coffee beans which we can see from the shape of the seed. Robusta has a shape that tends to be round and smaller in size, and has a rougher texture. Arabica, on the other hand, is slightly flatter and longer in shape. The size is slightly bigger than Robusta but the texture of Arabica is smoother than Robusta. This is the basis of this study where the images of the two coffee beans will be extracted using the first-order texture feature extraction method based on MU parameters, standard deviation, skewness, energy, entropy, and smoothness. The method for collecting data was in the form of a quantitative method using images from each coffee bean, both Arabica and Robusta, with a total of 130 images. The comparison between training_data and test_data is 80:20. Through research conducted in the form of performance parameters with the best accuracy, including: Learning rate 0.01, max epoch or maximum iteration of 10 and 30%, the amount of training data used is 39 training images and 26 test images resulting in an accuracy presentation of 71% for the training process and error with a percentage of 96% for the test process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.