Abstract
Optimal transport provides a metric which quantifies the dissimilarity between probability measures. For measures supported in discrete metric spaces, finding the optimal transport distance has cubic time complexity in the size of the space. However, measures supported on trees admit a closed-form optimal transport that can be computed in linear time. In this paper, we aim to find an optimal tree structure for a given discrete metric space so that the tree-Wasserstein distance approximates the optimal transport distance in the original space. One of our key ideas is to cast the problem in ultrametric spaces. This helps us optimize over the space of ultrametric trees --- a mixed-discrete and continuous optimization problem --- via projected gradient decent over the space of ultrametric matrices. During optimization, we project the parameters to the ultrametric space via a hierarchical minimum spanning tree algorithm, equivalent to the closest projection to ultrametrics under the supremum norm. Experimental results on real datasets show that our approach outperforms previous approaches (e.g. Flowtree, Quadtree) in approximating optimal transport distances. Finally, experiments on synthetic data generated on ground truth trees show that our algorithm can accurately uncover the underlying trees.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.